

数字防水气压传感器 WF183D

主要特点

数字压力温度直接读取

▶ 工作电压: 2.4V~3.6V

• 压力量程: 0~1100kPa(绝压)

内补算法

• 工厂免校准

• 高精度

工作电流: 1.5mA待机电功耗: < 2uA

工作温度: -40~+125℃UART串口通信,使用方便

• 尺寸: 3.8 X3.6 X1.05 mm

典型应用

- 手持胎压计、充气泵
- 天气预报
- 工业压力和温度传感器系统
- 运动手表
- 电子烟

产品描述

WF183D是一颗经济型数字压力温度传感器内部包含一个MEMS压力传感器和一个高分辨率 24位△∑ADC及DSP。WF183D通过UART提供高精度已校准压力和温度数字输出,通讯连接非常简单。 产品出厂前已完成压力温度校准,可以即插即用,无需客户再生产校准。

采用UART通信,对MCU要求更低,降低客户整机成本。

WF183D 防水等级达到IP65,满足大部分防水产品要求。

99.99% 纯金丝

高TG基板

进口材料

防水胶

350℃超高温焊接不掉盖

1. 方框图

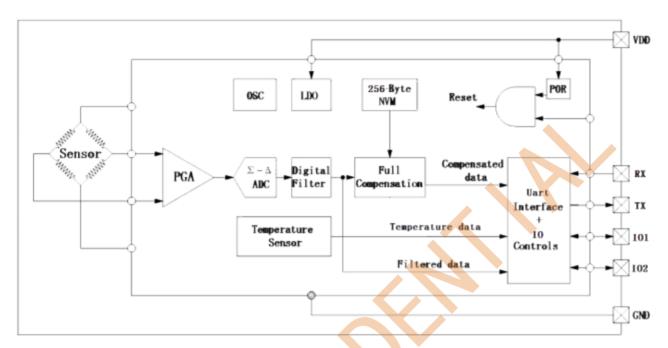


图 1: 内部框图

2. 引脚配置

脚位	名字	方向	功能			
1	TS	测试	功能测试脚			
2	GND	输入	供电电源地			
3	VDD	输入	供电电源正			
4	VS	输出	外接稳压电容			
5	RX	输入	串口数据输入			
6	TX	输出	串口数据输出			
7	TS	测试	功能测试脚			
8	TS	测试	预留一个电容到地			

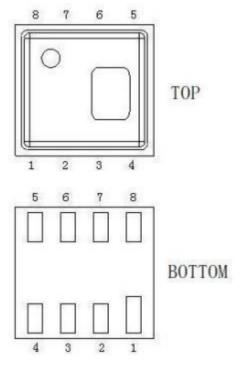


图 2: 引脚图

3. 电气特性

3.1 极限参数

参数	符号	状态	最小	最大	单位
过压	P _{MAX}			1.5X	1.5倍
电源电压	V_{DD}		-0.2	4	V
接口电压	V _{IF}		-0.3	V _{DD} +0.3	V
操作范围温度	T _{OP}		-40	125	$^{\circ}$
存储温度范围	T _{STG}		-50	150	$^{\circ}$
最大焊接温度	T _{MS}	最长40秒		250	$^{\circ}$

3.2 电气参数

参数	符号	环境条件	最小	标准	最大	单位
峰值电流	I _{PEAK}	在转换过程中		1.5		mΑ
静态电流	I _{STB}				0.2	uА
串行通信波特率				9600		Hz
数字输入高电压	V _{IH}		0.8			V
数字输入低电压	V _{IL}				0.2	V
数字输出高电压	V _{OH}	$I_0 = 0.5 \text{ mA}$	0.9			V
数字输出低电压	V _{OL}	lo = 0.5 mA			0.1	V

3.3 压力温度参数

参数	符号	条件	最小	标准	最大	单位
压力测量范围	P _{FS}		0		1100	kPa
绝对压力精度		从 10 ℃ 至 80 ℃			1.5	kPa
		-20 ℃ 至 125 ℃			10	kPa
相对压力精度		在 25 ℃		0.5		kPa
		从 10 ℃ 至 70 ℃		1.5		kPa
最大误差(电压影响)		电压 2.4V 到 3.6 V			2.5	kPa
压力/高度分辨率		压力模式		0.01		kPa
过回流焊漂移		回流焊后		0.5		kPa
长期漂移		经过1年后		1.5		kPa
回流焊的曲线		IPC/JEDEC J-STD-020C		0.5		kPa

4. 工作模式

4.1.1 串口设置

波特率	开始位	数据位	停止位	校验位
9600	1	8	1	NO

4.1.2 命令格式

发送命令格式

起始标志	数据长度	控制指令	校验位
0x55	1byte	1byte	1byte

控制指令集

控制指令	命令字	命令功能	备注
CMD SLEEP	0x01	休眠	马上进入休眠
CMD CAL PRESS	0x0D	读气压	计算一次气压并返回
CMD CAL TEMPRATURE	0x0E	读温度	计算一次温度并返回

数值返回格式

起始标志	数据长度	数据类型	返回数据	校验位
0×AA	1 byte	1 byte	n byte	1byte

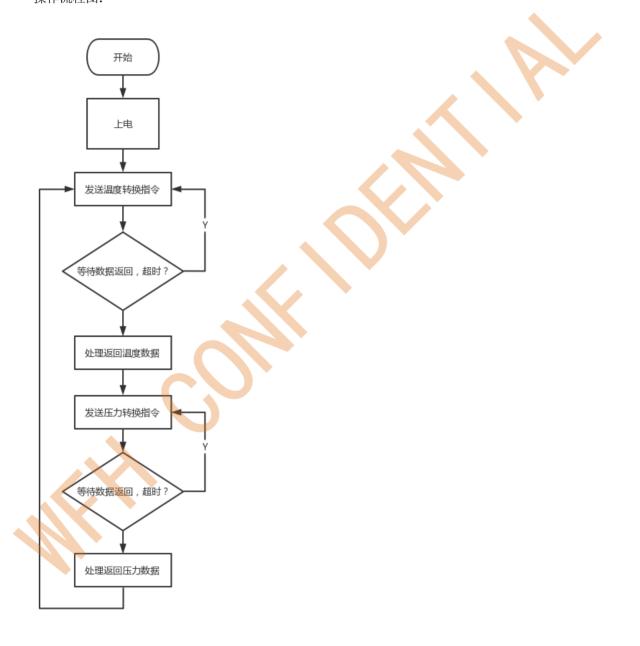
值返数据类型

值返数据类型	类型字	返回内容	返回内容格式
RET_ACK	0x01	无内容	U8
RET_PRESS	0x09	气压值	U32
RET TEMPERATURE	0x0A	温度值	S16

校验位说明

CRC 格式为: CRC-8/MAXIM x8+x5+x4+1

例称:


```
u8 Cal_uart_buf_CRC (u8 *arr, u8 len)
{
    u8 crc=0;
    u8 i=0;
while(len--)
    {
        crc ^= *arr++;
        for(i = 0; i < 8; i++)
        {
            if(crc & 0x01) crc = (crc >> 1) ^ 0x8c;
            else crc >>= 1;
        }
        return crc;
}
```


其他说明

转换当前压力的操作流程: 先获取温度,等待数据返回后再切换到获取压力。

- * 如果间隔一定时间到数据还未返回,可以继续发送相同指令直到数据返回再切换转换指令。
- *由于转换压力需要根据当前温度进行补偿,所以需要先进行采集转换温度。发送获取温度即可转换当前温度。 *在普通模式下: 串口接收无信号持续3S左右后自动进入待机 操作流程图:

举例说明

1. 获取温度值 (CMD_CAL_TEMPERATURE)

主机: HEAD LENGTH CMD CRC

HEAD = OX55, LENGTH: 帧长度

数字传感器WF183D

例如TX: 55 04 0E 6A

从机应答: HEAD LENGTH RET TDO TD1 CRC

HEAD = OXAA LENGTH: 帧长度

RET:数据进制(10进制) TDO TD1:返回数据

CRC: 校验

例如RX: AA 06 0A 02 01 22 返回结果温度(S16): 0x0102 = 258, T = 258/10 = 25.8C

2. 获取压力值 (CMD_CAL_PRESS)

主机: HEAD LENGTH CMD CRC

HEAD = 0X55, LENGTH: 帧长度 CMD: 命令 CRC: 校验

例如TX: 55 04 0D 88

从机应答: HEAD LENGTH RET DATAO DATA1 DATA2 DATA3 CRC

HEAD = OXAA LENGTH: 帧长度

DATAO... DATA3: 返回数据

CRC: 校验

例如RX: AA 08 09 AO 86 01 00 7F 返回结果(U32): 0X000186AO = 100KPA

3. 休眠指令(CMD_SLEEP)

TX: 55 04 01 2B

RX: AA 04 01 F9 马上进入休眠模式

4. 获取压力值CMD_CAL_PS(0X26) AI防抖模式(伟烽恒专利)

主机: HEAD LENGTH CMD CRC

HEAD = 0X55, LENGTH: 帧长度 CMD: 命令 CRC: 校验

例如TX: 55 04 26 8B

从机应答: HEAD LENGTH RET DATAO DATA1 DATA2 DATA3 CRC

HEAD = OXAA LENGTH: 帧长度

DATAO... DATA3: 返回数据

CRC: 校验

例如RX: AA 08 18 AO 86 01 00 CE 返回结果(U32): OXO00186AO = 100KPA

5. 获取温度值CMD_CAL_TS(0X27) AI防抖模式(伟烽恒专利)

主机: HEAD LENGTH CMD CRC

HEAD = 0X55, LENGTH: 帧长度 CMD: 命令 CRC: 校验

例如TX: 55 04 27 D5

从机应答: HEAD LENGTH RET TDO TD1 CRC

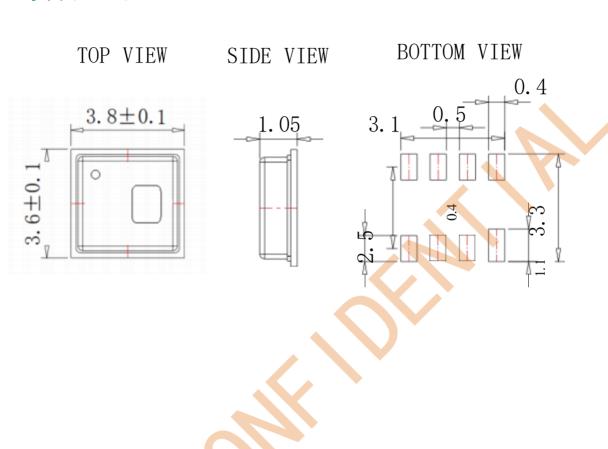
HEAD = OXAA LENGTH: 帧长度

数字传感器WF183D

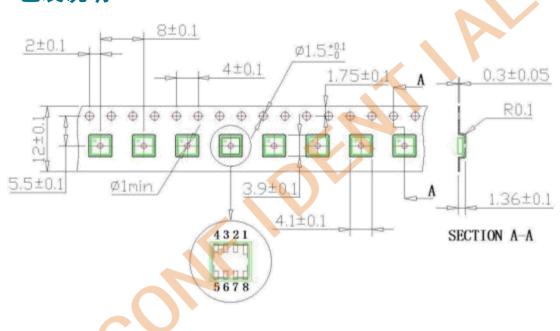
RET: 数据进制(10进制) TDO TD1: 返回数据

CRC: 校验

例如RX: AA 06 19 02 01 8C 返回结果温度(S16): 0x0102 = 258, T = 258/10 = 25.8C


注: AI防抖模式下增强数据稳定性,有效控制数值波动性,采样速度相对慢。

5. 典型应用电路 WF183D VDD VS GND TX RX TX



6. 封装(LGA8)

数字传感器WF183D

7. 包装说明

